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An Upper Bound for Optimal 
Maintenance Costs 
of Weapon Systems 

1.0 INTRODUCTION 

New weapon systems being designed and fielded are composed of sophisti- 
cated and highly integrated subsystems that use computers, printed circuit 
boards, and complex electronic and electro-optical equipment. Typically they are 
modular and utilize a remove-and-replace maintenance concept. If the compo- 
nents are relatively inexpensive, we can buy enough spare components and sub- 
components for the proper maintenance of weapon systems. However, since 
high-technology components are usually more expensive than mechanical ones, 
the maintenance costs of complex weapon systems can be much higher than 
those of simpler weapon systems. One of the most important tasks of logisticians 
is to determine the level of optimal maintenance costs so that maintenance re- 
sources can be used efficiently. 

In this report we propose a way to determine an upper bound for the opti- 
mal maintenance costs of a weapon system and for the optimal allocation of 
maintenance resources and identification of problems in maintaining weapon 
systems, while having available the target number of weapon systems in the 
field. The maintenance costs in this study include the costs of repair parts and la- 
bor costs for maintenance actions. 

2.0 MODEL FOR THE OPTIMAL MAINTENANCE COST 

2.1   Notations 

P:       weapon system procurement cost per unit 

T:       lifetime of the weapon system 

x:       lifetime maintenance cost ratio to the price of the system P (total lifetime 
maintenance cost per end item is Px) 

A(x):  maximum average availability of the weapon system achieved with life- 
time maintenance cost ratio x 

n:       target number of available weapon systems 



N(x): minimum number of weapon systems required in order to have at least 
n available weapon systems in the field 

C(x):  total lifetime costs. 

2.2 Model 

♦ Costs 

► Investment cost: N(x)P 

► Lifetime maintenance cost: nPx 

► Total cost: N(x)P + nPx. 

♦ Constraints 

► A{x) N(x) = n = target number of available systems 

♦ Objective function 

np 
► Minimize C(x) = -77-7 + nPx. 

A(x) 

2.3 Properties of A(x) and C(x) 

Since we define A{x) as the maximum average availability of the weapon 
system achieved with lifetime maintenance cost ratio x, A(x) is a continuous func- 
tion of x. We assume that A(x) is differentiate or that A(x) can be approximated 
by a differentiable function. 

In many cases, especially for high-tech weapon systems, the availability 
function A(x) is S-shaped, as depicted in Figure 1. But we can assume, as shown 
later, that the logarithm, In (A(x)), is concave. 



Figure 1. 
Shape of Availability Function A(x) 

Let A;(x;) be the availability of component i of the system when we use xt 

units of component i for each system. The component availability increases as 
we spend more maintenance resources, but the marginal effect of each additional 
unit decreases and is small compared to the current component availability, as 
shown in Figure 2. 

Availability 

A,(0) 

Figure 2. 
Component Availability Function A{(x) 



Let X; be the total number of component i allocated for the maintenance of 
weapon systems in the field. Then the component availability function Ai is a 
step function of X,-, or Xi = -£. For X, = 0, A{{0) is the average availability of the 
components in the system. If n is large, A,(0) is much higher than the marginal 
increase of the component availability for the additional one unit of component i. 
So, if n is large enough (say, greater than 100), then the component availability is 
approximately concave, as shown in Figure 2. Thus we can assume that A{x^ is a 
concave function of x{. 

Now, the system availability A(x) is the product of component availability 
functions A^x). That is 

A(x) = IT Ai(Xi). 
i 

Let Px be the following optimization problem: 

In A(x) = max 2 In Ai(xi) 
i 

s.t. 2 ct Xj < x, 
i 

where ct is the unit price of component i. 

Let x* and y* be the optimal solutions of Px and P respectively, and let 
U - ax* + (1 - oc)y*. Then 

Zäh = X[ax* + (1 -a)y*] 
/' i 

= ccEx- +(1 -cOZy- 
i i 

< ax + (1 - oc)y, 

and hence (t{) is a feasible solution of the optimization problem P ax+a-cOy-   If 
i4f(x;) is concave, then In At(xt) is also concave and we have 

In A(ax + (1 - cc)y) > Z In Aiijtd 
i 

= 2 In A:[ax* + oc(l - a)y*] 

> 2 [a In Ai (x*) + (1 - a) In At (y*)] 
i 

= a 2 In Af (x*) + (1 - a) 2 In A;(y*) 

= a In A(x) + (1 - a) In A(y) 

for any x > 0, y > 0, and 0 < a < 1. Therefore, In A(x) is a concave function of x if 
all A{(xt) are concave. 



Now we can show that the cost function C(x) is a convex function of x if 
In A(x) is concave. Let g(x) = In A(x). Then 

„,   .        A"A(X)-[A'(X)]
2
    . n,        n      .   n fW = Tit  oforallx ^ ° A2(x) 

or 

A"{x)A{x) < [A'(x)Y for all x > 0. 

tiP Since C(x) = jrr+nPx, we have 

r„M  _   -A»(x)A(x) + 2[A'(x)]2 p 

> 0 

for all x > 0. Thus, C(x) is a convex function of x. 

2.4 Optimal Maintenance Cost Ratio 

The total cost C(x) can be expressed by 

C(x) = N(x)P + nPx 
= nP + [N(x) -n]P + nPx 

= nF + [Ä " nP] + nPx ^ !] 
= nP+^^-nP + nPx 
= cost of T/£ + costofM/F + lifetime maintenance cost 

where T/E is Table of Equipment and M/F is Maintenance Float. By differentiat- 
ing Equation 1 with respect to x, we find that the optimal maintenance cost ratio 
x* must satisfy. 

If we know the availability function A(x), we can find the optimal maintenance 
cost ratio x*. In most cases, however, the availability function A(x) is unknown. 
We may have a few values of A(x) for some values of x from the maintenance 
data of the systems in the field. But these values of A(x) do not necessarily reflect 
the optimal uses of maintenance resources. So we cannot use this partial infor- 
mation in determining the optimal maintenance cost ratio. 



3.0 AN UPPER BOUND OF THE OPTIMAL MAINTENANCE 

COST RATIO 

3.1   Concave Availability Function A(x) 

In this section, we find an upper bound of the optimal maintenance cost ra- 
tio when A(x) is concave. Since C(x) is convex, from the optimality condition of 
(Equation 2), we have the following: 

if T7TT < 1, thenx* < x. 
AHx) 

[Eq.3] 

A'Oc) So, if we could find a point x such that -^— < 1, then an upper bound of x is x; 

that is, x* <x. 

Since A(x) is concave, for any x > 0, 

A'(Y) < ^ or ^- < ^~ A U) <   x    or A2(X) < xA(z) 

as is shown in Figure 3. 

[Eq.4] 

Stope =' 

Figure 3. 
Concave Availability Function 

From Equation 3 and Equation 4, we have the following relationship: 

if xA(x) > l,thenx* < x. [Eq.5] 



Let (t, A(t)) be a point such that t A(t) > 1. Then, for any x between 0 and t, as is 
shown in Figure 4, 

A(x) > 4p. 

Figure 4. 
Upper Bound for Concave Availability Function 

^SIoPe = *f 

Since C(x*) < C(x) for all a:, we have 

C(x*) < C(x) = nP[x + ^]< nP[x +-^]for 0 <x < t. 

Let g(x) = x + 
A(f)* • 

Then g(x) is convex and has the minimum value at 

x = j-fij? < t and hence 

C(xl<rmnnP[x + 7^]=2nPj^. 

Since xAQc) >(x)^- = ^(x)2 = ^^ = 1, we have x < x. Therefore, an up- 

per bound of x is x = i^jy and an upper bound of total cost is 2nPQ^ . 



3.2 S-Shaped Availability Function 

In this section we try to find some properties of the optimal maintenance 
cost ratio x when the system availability function A{x) is S-shaped as shown in 
Figure 1. If the weapon system has an S-shaped availability function, then A(0) is 
very small. We will assume that A(0) = 0 for ease of computation. 

Let t0 be a point such that A(x) < ^ • x for all x > 0. That is, A{x) is below 
Ait ) the line y - —£- • x for all x > 0 as is shown in Figure 5. 

Sloped 

Figure 5. 
S-Shaped Availability Function 

3.2.1 SOME PROPERTIES OF THE OPTIMAL MAINTENANCE COST RATIO X* 

Case I: 0<x<t„ 

For any x between 0 and t0, we have 

A'{x) > ^ or 
A'M   > ^ 
A2(x)  ~ xA{x) 

If x A{x) < 1, then -r— > j^-j > 1 and hence x > x from the convexity of C(x) and 
optimality condition of x.   Thus, if we know that xA(x) < 1 for some x < t& 

x A{x) > 1 or x > tQ. Figure 6 shows the availability function for Case I. 



Figure 6. 
S-Shaped Availability Function: Case I 

Case II: x>t0 

For any x > t0, we have 

A/(Y\ < iJW nr^« < _J_ A(x)<    x   or AHX) < XMX). 

If x A(x) > 1, then ^ < 1 and hence x* < x. So, if we know that x A(x) > 1 for 
some x > t^ then x is an upper bound of x. Figure 7 shows the availability func- 
tion for Case H 



Figure 7. 
S-Shaped Availability Function: Case II 

3.2.2 AN UPPER BOUND OF THE OPTIMAL COST RATIO 

Suppose we know that x  > t   and we have a point (t, A(t)) such that 
t A(t) > 1.  Then we can show that the upper bound of the optimal maintenance 
cost ratio is x = < t. 

Since we know that x* > t0, t0A(t0) < 1 because x < t0 if t0 A(t0) > 1. Let 
x = [^. Then t0<x<t, because t A(t) > 1 and t0 A(t0) < 1. As is shown in 

Figure 8, 

A(x) >^fx 

and 

xA(x)>^(xf = ^^ = l. 

Thus, since xA(x) > 1 andx > t0, we know that x* < x by the property of optimal 
maintenance cost ratio. 

Suppose we have field data (t, A(t)) with t A(t) > 1, but we do not know 
whether x > t0 or x* < t0. Let x = J-^ . 

10 



Figure 8. 
Upper Bound for S-Shaped Availability Function 

Case I: A(x) >^x. 

UA(x) >^rx, then* > t0andC(x*) < C(x) = nP[x + ^] < 2nP J^. 

If x* > t0, then we know that x* <_ x =  l-^ .   Now suppose that x* < tQ. 

Since C(x*) = nP[x* + ^] < 2nP J^, we have 

Y* < 2 [^ - -1— < 2 P- - — 

Because we do not know whether x* > t0 or x* < t^ we only have 

x* < max ' pT  2 /^^ 3-1=2 f^ --1 
Mtr 

Thus an upper bound of x' is x = 2 1-^ - -^ and an upper bound of total cost 

C(x)is2nPj^. 

Case II: A(x) <^fx. 

In this case, we cannot find an upper bound of x by using only one data 
point (t, A(t)).  But we know that x'A(x') > 1 and hence x* > -^ > 1.   So, if the 

11 



value of t A(t) is close to one for sufficiently large A(t), it is reasonable to assume 
that A{x) > ^j- x and hence an upper bound of x* is x = 2Jj^ - MD < t. 

3.3 Summary 

If we know that x > t0 and t A(t) > 1 for some t0, then an upper bound of x* is 
x = <A(t) 

Let t be a number such that t A(t) > 1.   Then, either x* < x = J^ or 
MO- x*A(x*)>l.     Moreover,   if  A(x) > —x,  then  an  upper  bound   of  x is 

x = 2 P- --i- 
"*■      ^4 MO       A(t)- 

Table 1 shows the upper bounds of x and C{x) for the weapon systems ac- 
cording to their level of technology for given data (t, A(t)) with t A (t) > 1. For a 
simple low-technology weapon system whose components are relatively reliable 
and inexpensive to maintain, the initial availability A{o) is determined by the 
mean time between failures (MTBF) and is typically higher than for a more com- 
plex high-technology system. In this case, the marginal effect of additional main- 
tenance resources is decreasing, which means that A{x) is concave and an upper 
bound of x* is Jjrz . For the high-tech weapon systems, the availability function 

may be S-shaped and may not satisfy the condition that A(x) > —x. So we can- 
not identify an upper bound of x* at this point. However, if t A(t) is close to one, 
an upper bound of x* is x = 2lj^ - j^ < t. 

Table 1. 
Summary of Results for Upper Bound of Maintenance Cost Ratio 

Level of technology Upper bound of x Upper bound of C(x') 

Low 

Medium 

High 

V Mt) 

2p7 __L 

? 

zf£nP 

2ßFnP 

? 

12 



4.0 CANNIBALIZATION 

4.1   Optimal Maintenance Cost Model Using Cannibalization 

Suppose an end item has failed and cannot be fixed in a short time because 
of lack of spares or other resources. But suppose we can use cannibalization to 
fix this end item. 

By introducing cannibalization as a means of maintenance, we have three 
sources of maintenance for failed end items in the field: 

♦ Standard maintenance. Fix the failed end items by using the repair parts in 
stock. The capacity of standard maintenance is determined by the annual 
maintenance budget a = x/T. 

♦ Cannibalization. Fix the failed end items by cannibalization if we cannot fix 
them in a short time by standard maintenance. 

♦ Maintenance float. Replace the failed end items by M/F if they cannot be 
fixed either by standard maintenance or by cannibalization. But the failed 
end items replaced by M/F are repaired only by using the standard mainte- 
nance procedure. 

We will assume A(x) is made concave by the use of cannibalization. 

Suppose m end items fail and we assume that km end items can be fixed by 
cannibalization, where k is the reproduction rate of the failed end items by using 
cannibalization. That is, we can fix km end items by using m failed end items. 
Let M(x) be the expected number of available end items at any time. Then 

M(x) = N(x)A(x) + n[l - A(x)] k. [Eq. 6] 

The first term in the right-hand side of Equation 6 is the number of available end 
items without using cannibalization, and the second term is the number of end 
items that can be reproduced (or fixed) by using cannibalization. Since the target 
number of available end items is n, we have the following relation: 

N(x) A(x) + n[l - A(x)] k = n [Eq. 7] 

or 

n[l-k+kA(x)] N(x) = A(x) 
n 

A„(xY 

where 

^) = T^W ^ 

13 



Then the minimization of C(x) with cannibalization is equivalent (same cost and 
same number of available end items) to the minimization of C(x) with availabil- 
ity function A0(x) without cannibalization (see Figure 9). 

Availability A(x) 
and 

cannibalization 

'MinC(x) = /V(x)P+/iP.x- 

n 1 Cannibalization: /V(x) = ^ _"', * 

Availability A0 (x) 
and 

no cannibalization 

1 Min C(x) = TJ^+ nPx 

No cannibalization 

■ Availability AQ (x) 

Figure 9. 
Equivalence of Availability Functions 

4.2 Reproduction Rate of Cannibalization (fc-Factor) 

Suppose an end item fails and cannot be fixed by standard maintenance. 
Then the failure of the end item is due to component i with probability -yj. > 

i 
where F, is the probability that component / is backordered.   (We assume that 
components fail independently.) If m end items fail, then the expected number of 
component i that can be used for cannibalization is 

m 1 - F,- 

£F; 
/ . 

The expected number of end items that can be fixed by using m end items is, at 
least, 

mm s 
i 

m 1 - 

14 



and hence 

/^ITi1-:p l - 
max Fi 

i 

i 

If all the components have similar not-mission-capable supply (NMCS) rates, 
then k = 1 - j, where K is the number of components in the system. 

The fc-factor is highly dependent on max F,. But k is sufficiently large even if 
i 

max Fi is large. If only one or two components have high probability of backor- 
i 

ders and all the other components have relatively low probability rates, we can 
reduce max F,-, so that k is large enough, by investing relatively small amounts of 

i 

maintenance resources in these high-probability-rate components. However, this 
is a very rare case in real situations. In general, several components have similar 
probabilities. Suppose, for example, we have the probability rates shown in 
Table 2 for the components. In this case k > 0.85. 

Table 2. 
Example of Component Backorder Rates 

Backorder rate Mean time between 
Component per year backorders (months) 

1 4 3 

2 4 3 

3 3 4 

4 3 4 

5 3 4 

6 2 6 

7 2 6 

8 2 6 

9 2 6 

10 2 6 

Others Almost 0 - 

Moreover, the components or repair parts with high probability rates (and 
also high failure rates) are mostly cheap ones compared to the low-failure-rate 
items. So, we can increase the availabilities of these components with relatively 
small amounts of resources to make k large enough. 

15 



4.3 PROPERTY OF A0(X) WITH FIXED k 

By using cannibalization, we have availability A0{x), given by 

A M -      Mx)  

It is easy to show that A0(x) > A{x) for all x and A0(x) is an increasing function 
of x. 

The second derivative of A0(x) is given by 

AoM = TTTTTT^ {A"{x)[l -k + kA(x)] - 2k[A'(x)]2}. 

Since In A{x) is concave, [A1 (x)]2 > A" (x) A(x) for all x > 0 and hence we have 

A»(x)<   (1-k)A"ix\[l-k-kA(x)]. 

So A" (x)has the following properties: 

If A"{x) < 0, then A'J(x) < 0. 
If A"(x) > Oandfc > j^, thenAj'Oc) < 0. 

If A"(x) > Oand/c < ^, thenA?(x) < T£^. 

UA{x) is small, then A(x) is approximately linear, especially for the high-tech 
weapon systems, and hence A"{x) = OandA^(x) < 0. In the midranges of A(x), 
k is large enough so that k > j^y- For high values of A{x), A(x) is concave and 
hence A0(x) is concave. Therefore, we can assume that A0{x) is concave, at least 
approximately. 

Figure 10 shows that A0(x) is nearly concave in the typical situations. 

16 



1 
^^V 

- A0(x) ^<:rV^/ 
0.8 A  (x) with fixed k = 0.9 

\ ^/ ' ..--•*' 
-■*'*'    S   S           / 

0.6 #4          yS    ..■' 
..-•'''             y v^ / 

0.4 k=0.7/ 

jS,-''                                    ^y>^^                                         ^^ #2 

0.2 ' y/s'       ^  -^A 
A [                                                                                                   ,.  ,     .                                , 

""                #1 /n /4(x,) /s //neaA 

Figure 10. 
Example of Typical Availability Function 

Curve 1 in Figure 10 is the extreme case of system availability that lnA(x) is 
linear. So, the typical availability curve lies above curve 2. Curves 3 and 4 de- 
note the availability curves when we use cannibalization with k = 0 .7 and k = 0.9, 
respectively. Then A0(x), shown by curve 5, lies between curves 3 and 4 and is 
nearly concave. 

4.4 An Upper Bound of Optimal Maintenance 
Cost Ratio Using Cannibalization 

Suppose Ao{x) is concave and we have a field data t A(t) > 1 with t A(t) > 1. 
Then an upper bound of optimal maintenance cost ratio is 

x - }A{t) 

and an upper bound of total cost is 

If t = 2 and A(t) = 0.9, for example, then x = 1.491 and C = 2.981 nP. The reduc- 
tion in total costs is 4.2 percent and the reduction in maintenance costs (including 
M/F costs) is 6.2 percent. 

17 



If we know the value of k, the upper bound of optimal maintenance cost ra- 
tio is 

^=vsr=>/i)[i-fc+/cA(f)] 

and an upper bound of total cost is 

C = 2^ nP= 2^[l-k + kA(t)] nP. 

If t = 2, A(t) = 0.9, and k = 0.7, then x = 1.438 and C = 2.875 np. The reduction in 
total costs is 7.6 percent and the reduction in lifetime maintenance costs (includ- 
ing M/F costs) is 11.2 percent. 

4.5 Examples 

For ground weapon systems such as the Ml Abrams tank and the Ml 13 A3 
armored personnel carrier (APC), current maintenance cost ratios are slightly 
above 2.0 and average availabilities are 0.90 to 0.95. For the Multiple Launch 
Rocket System (MLRS), the current maintenance cost ratio is also slightly greater 
than 2.0. For the rotary-wing aircraft, the maintenance cost ratio is about 1.5 to 
1.6. Maintenance costs include repair parts costs (consumption plus average 
stock), depot maintenance costs, and intermediate maintenance costs. Mainte- 
nance personnel costs at the unit level are not included. Table 3 shows the main- 
tenance cost ratios of several weapon systems. 

Table 3. 
Weapon System Maintenance Costs 

Weapon 
system 

Weapon 
system 

unit costa 

($) 

Average 
lifetime costs 
per system" 

($) 

Maintenance 
cost 
ratio 

M1 Abrams tank 2,300,000 4,674,089 2.03 

M113A3APC 180,000 362,248 2.01 

MLRS 3,000,000 6,044,900 2.01 

AH-64 helicopter 10,680,000 16,000,000 1.50 

UH-60 helicopter 5,800,000 8,772,000 1.51 

aWeapon system unit cost is the average procurement cost of the end item. 
"Average lifetime maintenance costs per system are total lifetime (20 years) maintenance costs of the weapon 

systems divided by the target number of available weapon systems. 
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For the Ml, Ml 13 A3, and MLRS, the upper bounds of the optimal mainte- 
nance cost ratio is as shown in Table 1 of Section 3.0. For the AH-64 and UH-60, 
an upper bound of the optimal maintenance cost ratio (when k = 0.8) is x = 1.255, 
and an upper bound of total cost is C = 2.510 nP. The reduction in maintenance 
costs (including M/F costs) is 13.7 percent. 

4.6 Summary 

By using cannibalization, we can reduce the total life-cycle costs (or mainte- 
nance cost including M/F costs) of the weapon systems. Let 

A (r\ -      Mx) 

Then, by using cannibalization, we can have an equivalent optimization problem 
with availability function AQ(x). 

We have shown that A0(x) is nearly concave for all x > 0 and, hence, we can 
use the upper bound of optimal maintenance cost ratio x where x = Jj^ ■   Or, 

we can make A0(x) > A(t) f, which might not be satisfied for the original avail- 
ability function A(x). Therefore, if we use cannibalization, the upper bound of 
optimal maintenance cost ratio is x = J^ for given data (t, A(t)) with t A(t) > 1. 

Moreover, if we know the value of k, then we can improve the upper bound to 

X-; 
tll-k+kA(t)] 

Mt) 

5.0 CONCLUSIONS 

Suppose field data show that the average system availability is A(t) with life- 
time maintenance cost ratio t, with t A(t) > 1. If A(x) is a concave function of x, 
then the upper bound of the optimal maintenance cost ratio is x = Jj^ . 

In many cases, especially for high-tech weapon systems, the availability 
function A(x) is S-shaped. If A(x)is large enough to satisfy A(3c) > A(t) f, then the 
upper bound of x' is 2 f^- - jfa. If A(x) is small, then cannibalization should be 

used to increase weapon system availability. 

By using cannibalization, we have a new availability function A0(x), defined 
in the section on cannibalization, and an equivalent optimization problem with 
cannibalization.   In this case, the upper bound of x is x = Jj^ , which is the 

same as that of the concave availability function A(x). If we know the reproduc- 
tion rate of cannibalization, then we can further improve the upper bound of the 
maintenance cost ratio. 
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These results demonstrate the value of cannibalization, especially for high- 
tech weapon systems, for reducing total life-cycle costs while maintaining the 
target number of available end items in the field. 

If t A(t) > 1, then the lifetime maintenance costs (nPt) are greater than the 
weapon system procurement costs (nP/A(t)). The results of this study show that 
it is economical to reduce lifetime maintenance costs and increase the number of 
end items until the two costs (maintenance costs and system procurement costs) 
become the same when the availability function A(x) is concave. This means that 
the lifetime maintenance costs should not be higher than the weapon system pro- 
curement costs (or a cheaper solution would be to buy more units of the weapon 
system). This might be true for the S-shaped availability cases unless the avail- 
ability of the end items decreases drastically for small cuts in the maintenance re- 
sources. 

This study shows that x* is more likely to be less than t if t A(t) > 1 even for 
the S-shaped availability functions. In this case, we should examine the effective- 
ness of the current maintenance policies and resource allocations. The use of 
cannibalization ensures that we can reduce current maintenance costs if 
tA(t)>l. 

If lifetime maintenance costs (excluding fixed costs, such as test equipment 
and maintenance facilities) are greater than the weapon system procurement 
costs, we should improve maintenance management processes. We should also 
perform tradeoff analysis among the investments in maintenance resources and 
in end-item procurements to increase system availability with less cost. Finally, 
we should use cannibalization, if necessary, to increase system availability. 
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Glossary 

APC = armored personnel carrier 

M/F = Maintenance Float 

MLRS = Multiple Launch Rocket System 

MTBF = mean time between failures 

NMCS = not-mission-capable supply 

T/E = Table of Equipment 
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